|3

Clarity and
Maintainability

CERTIFICATION OBJECTIVE

° Writing Clear and Maintainable Code

Copyright 2008° by The McGraw-Hill Companies. This SCJD
bonus content is part of ISBN 978-0-07-159106-5, SCJP Sun
Certified Programmer for Java 6 Study Guide (Exam 310-065).
All use of The McGraw-Hill Companies’ SCJD bonus content
is subject to the terms and conditions set forth in the License
Agreement included with this book and CD.



833 Chapter I13: Clarity and Maintainability

CERTIFICATION OBJECTIVE

Write Clear and Maintainable Code

Now that you've made your code readable, does your easy-to-read code actually

make sense? Can it be easily maintained? These are huge issues for the exam, worth
a very significant chunk of your assessment score. We'll look at everything from class
design to error handling. Remember that you're a Team Player. Some key areas of
code clarity are covered in more detail in the Documentation chapter, so we won’t
discuss them here. Those areas include the importance of meaningful comments

and self-documenting identifiers. The issues raised in #his chapter are

M General programming style considerations
B Following OO design principles

M Reinventing the wheel

B Error-handling

General Programming Considerations

The coding conventions covered in the previous chapter are a great starting

point. But the exam is also looking for consistency and appropriateness in your
programming szyle. The following section lists some key points you should keep

in mind when writing your perfectly-formatted code. Some of these will be
explained in subsequent sections; several of these points are related to OO design,
for example, and we cover them in more detail in that section. Once again, this is
no time to debate the actual merits of these principles. Again, imagine you’ve come
into a project team and need to prove yourself as a, what? Yes! 7eam Player. The
first thing the team is looking for is whether you can follow the conventions and
standards so that everyone can work together without wanting to throw one another
out the seventh floor window and onto the cement fountain below. (Unless you're
a dot-com company and your office now looks over an abandoned gas station.)
These points are in no particular order, so don’t infer that the first ones are more
important than the last. You can infer, however, that your exam assessor will probably
be asking if you’ve done these things appropriately.



Write Clear and Maintainable Code 834

Keep Variable Scope as Small as Possible

Don’t use an instance variable when a local variable will work! Not only does this
impact memory use, but it reduces the risk that an object “slips out” to some place
it shouldn’t be used, either accidentally or on purpose. Wait to declare a variable
until just before it’s used. And you should @/ways initialize a local variable at the
time it is declared (which is just before use), with the exception of #ry/catch blocks.
In that case, if the variable is declared and assigned in the #ry/catch block, the compiler
won’t let you use it beyond that block, so if you need the variable after a #ry or carch
block, then you’ll have to declare it first ousside the try/catch.

Another way to reduce scope is to use a for loop rather than while. Remember
from the Programmer’s exam chapters that when you declare a variable as part of
the for loop declaration (as opposed to merely initializing a variable declared prior to
the loop), then the variable’s scope ends with the loop. So you get scope granularity
that’s even smaller than a method.

Avoid Designing a Class That Has No Methods

Objects are meant to have both state and behavior; they’re not simply glorified
structs. If you need a data structure, use a Collection. There are exceptions to this,
however, that might apply to your exam assignment. Sometimes you do need an
object whose sole purpose is to carry data from one location to another—usually as
a result of a database request. A row in a table, for example, should be represented
as an object in your Java program, and it might not always need methods if its sole
job is to be, say, displayed in a GUI table. This is known as the ValueObject pattern.
Which brings us to the next issue.

Use Design Patterns

When you use familiar patterns, then you’ve got a kind of shorthand for discussing
your design with other programmers (even if that discussion is between your code/
comments and the other person. If you've done it right, you won’t personally be
there to talk about it, as is the case with the Developer exam). If you need a Singleton,
make a Singleton—don’t simply document that there is to be only one of these
things. On the other hand, don’t go forcing your design into a pattern just for the
sake of using a pattern. Simplicity should be your first concern, but if it’s a toss-up
between your approach and an equally complex, well-known design pattern, go for
the pattern.



83 5 Chapter 13: Clarity and Maintainability

Reduce the Visibility of Things As Much As Possible

In general, the more public stuff you expose to the world, the less free you are to
make changes later without breaking someone else’s code. The less you expose, the
more flexibility you have for implementation changes later. And you know there are
always changes. So, making variables, methods, and classes as restricted as you can
while limiting what you expose to your “public interface,” you'll be in good shape
down the road. Obviously there are other subtle issues about inheritance (as in, what
does a subclass get access to?), so there’s more to consider here, but in general, be
thinking about reducing your exposure (think of it as reducing your liability down
the road). This is closely related to reducing the scope of variables.

Use Overloading Rather Than Logic

If you've got a method that needs to behave differently depending on the kind of
thing it was actually handed, consider overloading it. Any time you see #for switch
blocks testing the type of an argument, you should probably start thinking about
overloading the method. And while you’re at it...

Avoid Long Argument Lists
If you have a ton of arguments coming into a method, perhaps you need to
encapsulate the stuff you need in that method into a class of its own type.

Don’t Invoke Potentially Overridable

Methods from a Constructor

You already know that you can’t access any nonstatic things prior to your
superconstructor running, but keep in mind that even affer an object’s
superconstructor has completed, the object is still in an incomplete state until
after 7#s constructor has finished. Polymorphism still works in a constructor. So if
B extends A, and A calls a method in its constructor that B has overridden, well,
guess what happens when somebody makes an instance of B. You got it. The B
constructor invokes its superconstructor (A’s constructor). But inside the A
constructor it invokes one of its own methods, but B has overridden that method.
B’s method runs! In other words, an object can have one of its methods invoked
even before its constructor has completed! So while B isn’t even a fully formed
object, it can still be running code and even accessing its own instance variables.
This is a problem because its instance variables have not yet been initialized to



Write Clear and Maintainable Code 836

anything other than default values, even if theyre given explicit values when they're
declared. Yikes! So don’t do it. If it’s a final or private instance method, then you’re
safe since you know it'll never be overridden.

Code to Interfaces

Polymorphism, polymorphism, polymorphism. Use polymorphic arguments, return
types, and variables whenever possible (in other words, declare a variable, return
type, or argument as an interface type rather than a specific class type). Using an
interface as the type lets you expose only the definition of what your code can do,
and leaves the implementation flexible and extensible. And maintainable. And all
the other good OO things-that-end-with-ble. But if you can’t...

Use Abstract Classes When You

Need Functionality to Be Inherited

If you really must have implementation code and/or instance variables, then use an
abstract class and use that class as the declared polymorphic variable, argument, and
return type.

Make Objects You’re Finished

with Eligible for Garbage Collection

You already know how to do this. Either explicitly set the reference variable to null
when you have no more use of the object, or reassign a different object to that
reference variable (thus abandoning the object originally referenced by it). At the
same time...

Don’t Make More Objects Than You Need To

Just because there’s a garbage collector doesn’t mean you won’t have “memory issues.”
If you keep too many objects around on the heap, ineligible for garbage collection
(but you won’t, having read the preceding point), then you can still run out of
memory. More likely, though, is just the problem that your performance might be
slightly degraded by the overhead of both making all those objects and then having
the garbage collector reclaim them. Don’t do anything to alter your design just to
shave a few objects, but pay attention in your implementation code. In some cases,
you might be able to simply reuse an existing object by resetting its state.



837 Chapter 13: Clarity and Maintainability

Avoid Deeply Nested and Complex Logic

Less is more when it comes to branching. In fact, your assessor may be applying the
Cyclomatic Complexity measure to your code, which considers code to be complex
not based on lines of code, but rather on how many branch points there are. (It’s
actually much more complex than that. Ironically, the test for code complexity is
itself a rather complex formula.) The bottom line is, whenever you see a nested if°
or anything other than very simple logic flow in a method, you should seriously
consider redesigning that method or splitting functionality into separate methods.

Use Getters and Setters That Follow

the JavaBean Naming Convention

That means you should use set<yourPropertyName> for methods that can modify
a property (normally a property maps directly to an instance variable, but not
necessarily) and get<yourPropertyName> for methods that can read a property.
For example, a String variable 7ame would have the following getter/setter methods:

setName (String name)
String getName ()

If the property is a boolean, then you have a choice (yes, you actually have a
choice) of whether to call the read method get<property> or is<property>. For
example, a boolean instance variable 720t0rOn can have the following getter/setter
methods:

setMotorOn (boolean state)
boolean getMotorOn ()
boolean isMotorOn ()

The beauty of adhering to the JavaBeans naming convention is that, hey, you
have to name it somerhing and if you stick with the convention, then most
Java-related tools (and some technologies) can read your code and automatically
detect that you have editable properties, for example. It’s cool; you should do it.

Don’t Be a Procedural Programmer in an OO World
The two dead giveaways that you haven’t really made the transition to a complete
object “being,” are when you use the following:

B Really Big Classes that have methods for everything.



Write Clear and Maintainable Code 838

B Lots of static methods. In fact, 2/ methods should be nonstatic unless you
have a truly good reason to make them static. This is OO. We don’t have
global variables and functions. There’s no “start here and then keep executing
linearly except when you branch, of course...”. This is OO, and that means
objects all the way down.

Make Variables and Methods As Self-Explanatory As Possible
Don’t use variable names like x and y. What the heck does this mean: int x = 27;
27 whar? Unless you really think you can lock up job security by making sure
nobody can understand your code (and assuming the homicidal maniac who tries
won’t find you), then you should make your identifiers as meaningful as possible.
They don’t have to be paragraphs. In fact, if it takes a paragraph to explain what

a variable represents, perhaps you need to think about your design again. Or at
the least, use a comment. But don’t make them terse! Take a lesson from the core
APIs. They could have called ArInBException, but instead they called it
ArrayIndexOutOfBoundsException. Is there any question about what
that exception represents? Of course, the big Sun faux pas was the infamous
NullPointerException. But despite the use of the forbidden word pointer,
everybody knows what it means when they get it. But there could be some confusion
if it were called NPTException or even NullException.

Use the Core APIs!

Do not reinvent the wheel, and do 7ot—or you’ll automatically fail for certain—
use any libraries other than code you developed and the core Java APIs. Resist any
temptation to think that you can build something faster, cleaner, more efficient, etc.
Even if that’s true, it isn’t worth giving up the benefit of using standard classes that
others are familiar with, and that have been extremely, heavily tested in the field.

Make Your Own Exception Classes If You

Can’t Find One That Suits Your Needs

If there isn’t a perfect checked Exception class for you in java.lang, then create
your own. And make it specific enough to be meaningful to the catcher. In other
words, don’t make a BadThingHappenedException and throw it for every
possible business error that occurs in your program.



839 Chapter I13: Clarity and Maintainability

Do Not Return Error Codes!

This is Java. This is OO. If you really need to indicate an exceptional condition,
use an Exception! If you really want to annoy an assessor, use error codes as return
values from some of your methods. Even oze method might do the trick.

Make Your Exceptions with a String Constructor Argument
Doing so gives you a chance to say more about what happened to cause the exception.
When you instantiate an Exception, call the constructor that takes a String (or the
one that takes another lower-level exception if you’re doing exception chaining).
When you create your own Exception class, be sure to put in a constructor that
takes a String.

Follow Basic OO Design Principles

In the preceding section, some of the key points touched on areas we’ll dig a bit
deeper into here. You don’t have to be the World’s Best OO Designer, but you do
need to follow the basic principles on which the benefits of OO depend. Obviously
we can’t make this a “How to Be a Good OO Designer in 10 Easy Pages.” You need
a lot more study and practice, which we assume you’ve already done. This should be
old news by now, but you can bet that your assessor will be looking at these issues,
so a refresher won’t hurt. We're hitting the highlights of areas where you might get
points deducted from your assignment.

Hide Implementation Details

This applies in so many places, but coding with interfaces and using encapsulation
is the best way to do it. If you think of your code as little self-contained, pluggable
components, then you don’t want anyone who uses one of your components to have
to think about Aow it does what it does. It all comes down to inputs and outputs.

A public interface describes whar a method needs from you, and what it will return
back to you. It says nothing about Aow that’s accomplished. You get to change your
implementation (even the c/ass doing the implementing) without affecting calling
code. Implementation details can also be propagated through exceptions, so be
careful that you don’t use an interface but then put implementation-specific exceptions
in the throws clause! If a client does a “search,” they shouldn’t have to catch an
SQLException, for example. If your implementation code happens to be doing
database work that can generate SQLExceptions (like JDBC code would), the client



Write Clear and Maintainable Code 840

should not have to know that. It’s your job to catch that implementation-specific
exception and throw something more meaningful—a business-specific exception—
back to client code.

Use Appropriate Class Granularity

A class should be of the right, you know, granularity. It shouldn’t be too big or too
tiny. Rarely is the problem a class that’s too smalk however, most not-quite-OO
programmers make classes that are too big. A class is supposed to represent a thing
that has state and behaviors. Keep asking yourself, as you write each method, if that
behavior might not be better suited for some o#her thing. For example, suppose you
have a Kitchen class that does all sorts of Kitchen things. Like Oven things and
Refrigerator things, etc. So now you’ve got Kitchen things (Kitchen being a r00m)
and Refrigerator things and Oven things all in the same class. That’s three different
things. Classes (and thus the objects instantiated from them) really should be
specialists. They should do the kinds of behaviors that a #hing of that type should
do, and no more. So rather than having the Kitchen class include all the code for
Refrigerator and Oven behaviors, have the Kitchen class use a Refrigerator and
Oven in a HAS-A relationship.

This keeps all three classes simple, and reusable. And that solves your naming
problem, so that you don’t have to name your do-everything Kitchen class
KitchenFridgeOven.

Another possible cause of a Big Class is that you've got too many inner classes
defined. 700 many meaning some of the inner classes should have been either
top-level classes (for reuse) or simply methods of the enclosing class. Make sure
your inner or nested classes really need to be included.

Limit Subclassing

If you need to make a new subclass to add important functionality, perhaps that
functionality should really be in the parent class (thus eliminating the need for the
subclass—you just need to fix the superclass). When you feel the need to extend a
class, always look at whether the parent class should change, or whether you need
composition (which means using HAS-A rather than IS-A relationships). Look in
the core Java API for a clue about subclassing versus composition: the core API
inheritance hierarchy is really wide but very shallow. With a few exceptions (like
GUI components), most class hierarchies are no more than two to three levels deep.



841

Chapter 13: Clarity and Maintainability

Use Appropriate Method Granularity

Just as classes should be specialists, so too should methods. You’ll almost certainly
be docked points for your assignment if your methods are long (although in some
cases, especially in your Swing GUI code, long methods aren’t necessarily a reflection
of bad design). In most cases, though, the longer the method the more complex,
because often a long method is a reflection of a method doing too much. You’re

all programmers so we don’t have to hammer the point about smaller modular
functionality—rmuch easier to debug, modify, reuse, etc. Always see if it makes sense
to break a longer method up into smaller ones. But while in a deadline crunch you
might get away with long methods in the rez/world (feeling guilty of course), it
won’t fly for your Developer assignment.

Use Encapsulation

Your assignment will be scrutinized for this most fundamental OO principle. Expect
the assessor to look at the way in which you’ve controlled access to the state of your
object. In other words, the way you've protected your instance variables with setters
and getters. No need to discuss it here, just do it. Allow access to your data (except
for constants, of course) only through more accessible methods. Be careful about
your access modifiers. Having a nice set of accessor methods doesn’t matter if you've
left your variables wide-open for direct access. Again, make things as private and
scope-limited as you can.

Isolate Code That Might Change

from Code That Won’t Have To

When you design your classes, be sure to separate out the functionality that might
change into separate classes. That way, you restrict the places where you’ll have to
track down and make modifications as the program evolves.

Don’t Reinvent the Wheel

Why would you want to? Well, most people end up doing it for one of two reasons:

B They believe they can do it bezzer.
B They didn’t know there already was a wheel.

You need to be certain that you



Write Clear and Maintainable Code 842,

B Get it out of your head that you can do it better, regardless of whether you
actually can. A better mousetrap (to completely mix metaphors here) isn’t
what’s required. A solid, maintainable design 7.

B Always look for an existing solution first!

Use Core APlIs

Always always always check the core APIs, and know that occasionally you might
find the class you're looking for in a package other than where you’d expect it. So be
sure to really search through the APIs, even digging into packages and classes you
might think are a little off the path. Sometimes a solution can be where you least
expect it, so stay open to approaches that aren’t necessarily the ones you would
normally take. Flipping through a reference API book can help. A method might
catch your eye and even if it turns out 7oz to be your solution, it might spark an
idea about a different solution.

In some cases, you might not find exactly what you're looking for, but you might
find a class you can extend, thus inheriting a bunch of functionality that you now
won't have to write and test (subject to the warnings about subclassing we
mentioned previously).

Using core APT’s (besides being essential for the exam) lets you take advantage of
a ton of expertise and testing, plus you're using code that hundreds of thousands of
other Java developers are familiar with.

Use Standard Design Patterns

We can’t tell you which ones you’ll actually need for your assignment; that depends
on both your assignment and your particular approach. But there are plenty of
standard design patterns that let you take advantage of the collective experience of
all those who’ve struggled with your issue before you (although usually at a fairly
abstract level—that’s usually where most patterns do their work). So while the core
APIs let you take advantage of someone else’s implementation code, design patterns
let you take advantage of someone else’s approach to a problem.

If you put a gun to our heads, though, we'd probably have to say that Singleton
should be way up on your list of things to consider when developing your assignment.
But you mighr also take a look at MVC (for your client GUI), Fagade, Decorator,
Observer, Command, Adapter, Proxy, and Callback, for starters. Pick up a book on
design patterns (the classic reference is known as the “Gang of Four” (GOF) book,



84 3 Chapter 13: Clarity and Maintainability

Design Patterns: Elements of Reusable Object-Oriented Software, by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides) and take time to step back and
look at where your program might be trying to do something well-solved by a design
pattern. The patterns don' tell you how to construct your algorithms and implement
your code line by line, but they can guide you into a sound and maintainable
design. Perhaps most importantly, as design patterns are becoming more and more
well-known, developers have a common vocabulary to discuss design trade-offs and
decisions.

We believe that the use of design patterns has recently become more important in
the exam assessment than it has been in the past, due in large part to their growth

in popularity.

Handle Errors Appropriately

You’ll be evaluated for appropriate and clear error-handling throughout your
project. You might do really well with it in your GUI and then fall down in your
server, but it matters everywhere in your program.

Don’t Return Error Codes
This is Java. Using error codes as return values, rather than using exceptions, is a
Really Bad Idea. We're pretty sure your exam assessor knows that.

Don’t Send Out Excessive Command-Line Messages
Don’t be too verbose with your command-line messages, and be sure not to leave
debugging messages in! Your command-line messages should include only what’s
necessary to verify the startup of your programs and a very minimal amount of status
messages that might be crucial if the program fails. But in general, if something goes
wrong that you know could go wrong, you should be handling it with exceptions.
Whatever you do, don’t use command-line messages to send alert messages to the
user! Use a proper dialog box if appropriate.

Use Dialog Boxes Where Appropriate

On the other hand, don’t use dialog boxes for every possible message the user might
need to know about. If you need to display information to the user that isn’t of an
urgent nature (urgent being things like a record-locking problem or if you need to



Write Clear and Maintainable Code 844

offer a “Are you sure you want to Quit?” option). In many cases, a dialog box is
what you’ll use to alert the user when something in your program has caught an
exception, and you need user input to deal with it appropriately. The use of dialog
boxes from a usability perspective will be covered in more detail in Chapter 14.

Throw Checked Exceptions Appropriately
There’s a correct time and place for throwing checked exceptions, and being
reluctant to throw them can be just as bad as throwing them carelessly.

B Use runtime exceptions for programming errors.

B Use checked exceptions for things that your code might recover from
(possibly with help from the user).

B Checked exceptions are only for truly exceptional conditions.

B Do not use exceptions for flow control! Well, not if you hope to do well
both on the exam and in real life.

Remember, checked exceptions sure don't come for free at runtime; they've got
overhead. Use them when, but only when, you need them.

Create and Throw Your Own Exceptions When Appropriate
Make use of standard exceptions when they make sense, but never hesitate to create
your own if appropriate. If there’s a reasonable chance that an exceptional condition
can be recovered from, then use a checked exception and try to handle it. Normally,
the exceptions that you create can be thought of as Business Exceptions—in other
words, things like “RecordLockedException” or “InsufficientSearchCriteriaException”.
The more specific your exception, the more easily your code can handle it, and

you get the benefit of providing specific catch blocks, thus keeping the granularity
of your catch blocks useful. The opposite of that strategy would be to simply have
everything in one big #ry block that catches Exception (or worse, Throwable!).

Catch Low-Level Implementation Exceptions

and Throw a Higher-Level Business Exception

Say you catch an SQLException (not likely on the Developer exam). Do you throw
this back to a client? Of course not. For a client, it falls into the category of “too



84 5 Chapter 13: Clarity and Maintainability

much information.” The client should not know—or care—that the database server
happens to be using SQL. Instead, throw back to the client a more meaningful
custom business exception that he or she can deal with. That more meaningful
business exception is defined in your public interface, so the client is expecting it as
a possibility. But simply passing a low-level exception all the way to a client reflects
a poor design, since it couples the client with implementation details of the
server—that’s never a good idea in an OO design.

Make Your Exception Classes with a String Constructor

(As Well As a no-arg) for Providing Additional Meaning

Every Exception class you develop should have both a no-arg constructor and a
constructor that takes a String. Exception inherits a getMessage () method
from Throwable, and it returns the String of that message, so you can pass that
message back to your super constructor and then the catcher can query it for more
information. The message’s main use, however, is to provide more information in
the stack trace. So the more detailed your message (usually about the state of key
parts of the system at the time the Exception occurs), the more helpful it will be
in diagnosing the problem.

Never, Ever, Ever Eat an Exception
By eat we mean the following horrible practice:

try {
doRiskyThing() ;
} catch(Exception e) {}

See what’s missing? By catching the exception and then not handling it in any way,
it goes completely unnoticed, as if it never occurred. You should at the Jeasz print

the stack trace. Putting something like this in your exam project might be the
death blow.

Announce ALL Your Exceptions (Not

Their Superclasses) in Method Declarations

Your method should declare the exact, specific Exception types that it can throw,
as opposed to declaring a supertype. The following code shows an example:



Write Clear and Maintainable Code 846

class MyException extends Exception { }
class FooException extends MyException { }
class BooException extends MyException { }
public class TestException {
public void go() throws MyException { // Usually BAD to do this
boolean x = true;
if(x) |
throw new FooException() ;
} else {
throw new BooException() ;

}
}
}

In the preceding code, class Test Exception declares a method go () that
declares a MyException. But in reality, it might throw a BooException or
it might throw a FooException. This is perfectly legal, of course, since both
exceptions are subclasses of the declared exception. But why bother throwing two
different exceptions if you don’t declare it? Surely you don’t want to force the
catcher to insert logic to figure out whar kind of exception they got? This doesn’t
mean that catch code won’t sometimes do this, but it should be up to the
catcher, not the thrower, to make that choice.

Key Points Summary

That wraps up our look at clarity and maintenance issues, and here’s a list of the key
points. Cut it out and tape it to your wall next to all the other incredibly valuable
pages you've ripped from this book and taped to your wall. We're thinking of just
offering wallpaper so you can leave your book intact.

General Programming Considerations

B Avoid designing a class that has no methods.
B Use design patterns.

B Reduce the visibility of things as much as possible.
B Use overloading rather than logic.

|

Avoid long argument lists.



847 Chapter 13:

Clarity and Maintainability

Don’t invoke potentially overridable methods from a constructor.
Code to interfaces.

Use abstract classes when you need implementation functionality.
Make objects you're finished with eligible for garbage collection.
Don’t make more objects than you need to.

Avoid deeply nested and complex logic.

Use getters and setters that follow the JavaBean naming convention.
Don’t be a procedural programmer in an OO world.

Make variable and method names as self-explanatory as possible.

Make your own Exception classes if you can’t find one in the API to
suit your needs.

Don’t return error codes.

Make your exceptions with a String message.

Follow Basic OO Design Principles

Hide implementation details.
Use appropriate class granularity.
Use appropriate method granularity.

Use encapsulation.

Don’t Reinvent the Wheel

Use core APIs.

Use standard design patterns.

Handle Errors Appropriately

Don’t return error codes.
Don’t send out excessive command-line messages.

Use dialogs boxes where appropriate.



Write Clear and Maintainable Code 848

Throw checked exceptions appropriately.
Create and throw your own exceptions when appropriate.

Catch low-level implementation exceptions and throw a high-level business
exception instead.

Make your own custom exception classes have a String constructor (to take
a detail message).

Never, ever, eat an exception.

Announce all your exceptions, not just their supertypes.



